Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Article in English | MEDLINE | ID: covidwho-2313313

ABSTRACT

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Humans , COVID-19/pathology , COVID-19/virology , Host Microbial Interactions , Influenza, Human/pathology , Influenza, Human/virology , SARS-CoV-2 , Respiratory Syncytial Viruses , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology
2.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Article in English | MEDLINE | ID: covidwho-2253448

ABSTRACT

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


Subject(s)
COVID-19 , Communicable Diseases , Vaccines , Humans , Pandemics/prevention & control , COVID-19/prevention & control , Vaccines/therapeutic use , Vaccination , Vaccine Development
3.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Article in English | MEDLINE | ID: covidwho-2228475

ABSTRACT

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Positive-Strand RNA Viruses , Antiviral Agents/therapeutic use , Pandemics , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/drug therapy
4.
Ann N Y Acad Sci ; 1521(1): 32-45, 2023 03.
Article in English | MEDLINE | ID: covidwho-2228474

ABSTRACT

Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Viral Immunity: Basic Mechanisms and Therapeutic Applications." This report presents concise summaries from several of the symposium presenters.


Subject(s)
Influenza, Human , Pandemics , Humans , Influenza, Human/epidemiology
5.
Ann N Y Acad Sci ; 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2237733

ABSTRACT

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.

6.
Ann N Y Acad Sci ; 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2193071

ABSTRACT

Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3-6, 2022, experts in organoid development and biology convened at the Keystone Symposium "Organoids as Tools for Fundamental Discovery and Translation" to discuss recent advances and insights from this relatively new model system into human development and disease.

7.
Ann N Y Acad Sci ; 2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2052884

ABSTRACT

The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.

8.
Ann N Y Acad Sci ; 1510(1): 79-99, 2022 04.
Article in English | MEDLINE | ID: covidwho-1822055

ABSTRACT

Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Autophagy/physiology , Humans , Organelles , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis , Ubiquitin/metabolism
9.
Ann N Y Acad Sci ; 1511(1): 59-86, 2022 05.
Article in English | MEDLINE | ID: covidwho-1625044

ABSTRACT

The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.


Subject(s)
COVID-19 , Influenza Vaccines , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Global Health , Humans , Pandemics/prevention & control , Vaccines/therapeutic use
10.
Ann N Y Acad Sci ; 1506(1): 74-97, 2021 12.
Article in English | MEDLINE | ID: covidwho-1612914

ABSTRACT

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Congresses as Topic/trends , Embryonic Development/physiology , Research Report , Single-Cell Analysis/trends , Animals , Cell Lineage/physiology , Humans , Macrophages/physiology , Single-Cell Analysis/methods
11.
Ann N Y Acad Sci ; 1489(1): 17-29, 2021 04.
Article in English | MEDLINE | ID: covidwho-1280366

ABSTRACT

For years, experts have warned that a global pandemic was only a matter of time. Indeed, over the past two decades, several outbreaks and pandemics, from SARS to Ebola, have tested our ability to respond to a disease threat and provided the opportunity to refine our preparedness systems. However, when a novel coronavirus with human-to-human transmissibility emerged in China in 2019, many of these systems were found lacking. From international disputes over data and resources to individual disagreements over the effectiveness of facemasks, the COVID-19 pandemic has revealed several vulnerabilities. As of early November 2020, the WHO has confirmed over 46 million cases and 1.2 million deaths worldwide. While the world will likely be reeling from the effects of COVID-19 for months, and perhaps years, to come, one key question must be asked, How can we do better next time? This report summarizes views of experts from around the world on how lessons from past pandemics have shaped our current disease preparedness and response efforts, and how the COVID-19 pandemic may offer an opportunity to reinvent public health and healthcare systems to be more robust the next time a major challenge appears.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Delivery of Health Care , Pandemics , Public Health , Congresses as Topic , Humans
12.
Ann N Y Acad Sci ; 1484(1): 3-8, 2021 01.
Article in English | MEDLINE | ID: covidwho-1105353

ABSTRACT

Our food systems depend on complex interactions between farmers and food producers, local and federal governments, and consumers. Underlying these interactions are economic, environmental, and societal factors that can impact the types of food available, access to food, affordability, and food safety. The recent SARS-CoV-2 global pandemic has affected multiple aspects of our food systems, from federal governments' decisions to limit food exports, to the ability of government agencies to inspect food and facilities to the ability of consumers to dine at restaurants. It has also provided opportunities for societies to take a close look at the vulnerabilities in our food systems and reinvent them to be more robust and resilient. For the most part, how these changes ultimately affect the safety and accessibility of food around the world remains to be seen.


Subject(s)
COVID-19 , Food Safety , Food Services , Pandemics/economics , SARS-CoV-2 , COVID-19/economics , COVID-19/epidemiology , Congresses as Topic , Food Services/economics , Food Services/legislation & jurisprudence , Food Services/organization & administration , Food Services/standards , Humans
SELECTION OF CITATIONS
SEARCH DETAIL